В рубрику "Оборудование и технологии" | К списку рубрик | К списку авторов | К списку публикаций
Павел Барабаш
Проректор по научной работе Смольного университета Российской академии
образования
Станислав Воробьев
Научный сотрудник ФГУП НИИ "Рубин"
Олег Махровский
Руководитель информационно-аналитического сектора ФГУП НИИ "Рубин"
Технологии проводного абонентского доступа имеет смысл разбить на пять основных групп по критерию среды передачи и категориям пользователей. На рис. 1 представлена их классификация.
LAN (Local Area Network) – группа технологий, предназначенных для предоставления корпоративным пользователям услуг доступа к ресурсам локальных вычислительных сетей и использующих в качестве среды передачи структурированные кабельные системы категорий 3, 4 и 5, коаксиальный кабель и оптоволоконный кабель.
DSL (Digital Subscriber Line) – группа технологий, предназначенных для предоставления пользователям ТфОП услуг мультимедиа и использующих в качестве среды передачи существующую инфраструктуру ТфОП.
КТВ (кабельное телевидение) – группа технологий, предназначенных для предоставления пользователям сетей КТВ мультимедийных услуг (за счет организации обратного канала) и использующих в качестве среды передачи оптоволоконный и коаксиальный кабели.
OAN (Optical Access Networks) – группа технологий, предназначенных для предоставления пользователям широкополосных услуг, линии доступа к мультимедийным услугам и использующих в качестве среды передачи оптоволоконный кабель.
СКД (сети коллективного доступа) – группа гибридных технологий для организации сетей доступа в многоквартирных домах; в качестве среды передачи используется существующая в домах инфраструктура ТфОП, радиотрансляционных сетей и сетей электропитания.
Рис.1. Классификация
технологий проводного доступа
В группе LAN более 90% всех сетей построены с использованием технологии Ethernet, она обеспечивает пользователям корпоративных сетей скорости передачи информации от 10 Мбит/с до 1 Гбит/с. Широкое распространение сетей Ethernet при организации LAN, в первую очередь, связано с низкой стоимостью, легкостью управления и простотой используемого оборудования. Разрабатывавшаяся в конце 70-х гг. прошлого столетия исключительно для передачи данных технология Ethernet обеспечивает сейчас поддержку широкого набора услуг, включая передачу речи и видео с требуемым качеством обслуживания QoS (IEEE 802.1p), а также организацию VLAN (IEEE 802.1Q).
Для построения LAN был разработан и ряд других технологий, которые не получили широкого распространения. В первую очередь это маркерная бесколлизионная кольцевая технология Token Ring (IEEE 802.5) со скоростью передачи до 16 Мбит/с и ее высокоскоростная версия HSTR – High-Speed Token Ring (100 Мбит/с и 1 Гбит/с). Технология 100VG-AnyLAN (IEEE 802.12) была разработана для совместного использования в одной сети Ethernet и Token Ring. В силу высокой стоимости технология FDDI (Fiber Distributed Data Interface) не применяется при построении LAN, однако, обладая высокой отказоустойчивостью и скоростью передачи (100 Мбит/с), она используется для построения городских кольцевых магистралей с диаметром кольца до 100 км.
В технологиях доступа в последнее время наметилась интеграция технологии Ethernet с различными технологиями DSL (гибридный Ethernet). Наиболее известным вариантом такой интеграции является EoV. При скорости передачи порядка 10 Мбит/с сеть Ethernet может располагаться на расстоянии до 1,5 км от узла доступа, а при скоростях 3-4 Мбит/с это расстояние возрастает до 3-4 км. Стандарт на EoV разрабатывается в IEEE (IEEE 802.3ah) как EFM (Ethernet in the First Mile) в двух вариантах: EFMC (EFM Copper), имеющий характеристики обслуживания, аналогичные EoV, и EFMF (EFM Fiber), обеспечивающий скорость передачи от 100 Мбит/с до 1 Гбит/с на расстояние в несколько десятков километров до узла доступа [1]. Известны также: решение Ethernet с использованием ADSL компании Ericsson (EDA – Ethernet DSL Access) со скоростями передачи 8/2,8 Мбит/с и дальностью до 4 км и решение Ethernet с использованием SHDSL компании Shmid telecom со скоростью передачи 2,3 Мбит/с и дальностью до 5 км.
Для организации относительно недорогого доступа в Интернет жителей многоквартирных домов разработаны технологии СКД: HomePNA и PLC (Power Line Communication). Сеть доступа развертывается на существующей в доме кабельной инфраструктуре (витая медная пара, проводка радиотрансляционных сетей, электрическая проводка), а концентратор трафика может подключаться к узлу служб с использованием различных систем передачи (кабельных, радио и др.).
Для домашних сетей подходит оборудование гибридных Ethernet или mini-DSLAM при использовании в качестве концентратора трафика мультиплексоров DSL.
Технология HPNA разработана альянсом Home Phoneline Networking Alliance (стандарты: HPNA 1.0, HPNA 1.1, HPNA 2.0 и HPNA 3.0). Системы доступа HPNA 1.x обеспечивают коллективный доступ к каналу с пропускной способностью 1 Мбит/с на расстоянии до 150 м (HPNA 1.0) и до 300 м (HPNA 1.1). В стандарте HPNA 2.0 пропускная способность коллективного канала увеличена до 10 Мбит/с при дальности до 350 м. В стандарте HPNA 3.0 пропускная способность увеличится до 100 Мбит/с.
Разработкой стандартов доступа в Интернет по сетям электропитания занимаются различные международные организации. Одна из них – HomePlug Powerline Alliance – приняла в 2001 г. единый стандарт HomePlug 1.0 Specification, в котором пропускная способность сети составляет 14 Мбит/с. Стандартизация PLC-технологии ведется также в ETSI. По данным Internet News, только в 2007 г. объем продаж оборудования доступа в Интернет по сетям электропитания удвоился по сравнению с показателями 2006 г., а в 2008 г. ожидаются еще более высокие результаты. Перспективность этой технологии в качестве реализации базового универсального канала связи сети коллективного доступа трудно переоценить.
Технологии симметричного DSL-доступа используются при предоставлении услуг объединения LAN, организации выносов, подключении оборудования пользователя к транспортным сетям по симметричным медным линиям. К этой группе относятся технологии HDSL, SDSL, MDSL, MSDSL, SHDSL, HDSL2/4 И VDSL.
Симметричные технологии xDSL различают по числу пар используемых проводов. В частности, самая "древняя" симметричная технология HDSL (high bit rate DSL) применяется для передачи по одной, двум или трем парам, причем в каждой паре осуществляется дуплексная передача. Часть "родословного дерева" xDSL для симметричных технологий представлена на рис. 2 [2].
Рис. 2. Классификация
симметричных xDSL-технологий по числу пар используемых проводов
Сначала появился вариант HDSL для двух пар, нормированный в ANSI, который использует кодирование 2B1Q. Затем прошла стандартизация HDSL для трех, двух и одной пар в ETSI с использованием 2B1Q или CAP. Часто употребляются обозначения HDSL2 и SDSL2, причем технология HDSL2 рассчитана исключительно на передачу Т1, a SDSL2 поддерживает скорости от 384 кбит/c до 2,304 Мбит/с (с шагом 64 кбит/с).
Зачастую полная скорость (544 или 2,304 Мбит/с) не требуется или необходимая дальность при этих скоростях не достигается. Поэтому появились новые системы, заполняющие "зазоры в скоростях": сначала это были системы MDSL, работающие со скоростью от 160 до 784 кбит/с, позднее – системы MSDSL, обеспечивающие скорость передачи 160-320 кбит/с. MDSL представляет собой множество подсистем MSDSL, которые не были нормированы, а используемая технология соответствует HDSL.
Технологии SDSL2 предназначались в основном для делового сектора. Но возможности комбинированной передачи речи и данных, повышенная потребность частного сектора в скорости передачи и хороших технических характеристиках (таких, как спектральная совместимость, аварийное питание и т.д.) могут в будущем привести к тому, что SDSL2 заменят ISDN в частном секторе и тем самым создадут серьезную конкуренцию асимметричным службам xDSL. Первые образцы оборудования SDSL2 были представлены на выставках "Ce-BIT'99" и "Telecom" [3].
Системы SHDSL способны работать по одной или по двум витым парам со скоростью передачи соответственно от 192 до 2312 кбит/с с шагом 8 кбит/с и от 384 до 4624 кбит/с с шагом 16 кбит/с. В линии может быть установлено до 8 регенераторов (Рек. G.991.2 ITU-T). Длина линии при максимальной скорости достигает 20-30 км в зависимости от диаметра провода. Технология HDSL2/4 является аналогом SHDSL для потока Т1 и стандартизирована в ANSI T1.TRQ.06-2001.
Если первоначально развитие симметричных технологий xDSL в основном было ориентировано на потребности делового сектора, то асимметричные технологии xDSL предназначались для частного сектора. Такой подход определяет существенную разницу в требованиях к ним. В частном секторе было необходимо, чтобы уже существующая телефонная служба (ТфОП или BRI-ISDN) продолжала работать и при переходе на ADSL. Классификация асимметричных xDSL-технологий приведена на рис. 3.
Рис. 3. Классификация
асимметричных xDSL-технологий
ADSL (так называемая Full-rate ADSL) первоначально требовала наличия разветвителя. Технология обеспечивала максимальную скорость передачи в прямом направлении – 6,144 Мбит/с, а в обратном – 0,640 Мбит/с. Разделение осуществляется с помощью эхокомпен-сации или методом частотного разделения. Разветвители необходимы как со стороны АТС, так и со стороны абонентов. В ADSL после долгой конкуренции САР (амплитудно-фазовая модуляция) и DMTV (дискретная мультитоновая технология) последний вид модуляции получил наибольшее распространение.
Первые линии ADSL предполагали работу только на постоянных скоростях. Между тем решения ADSL могут регулировать скорость передачи в зависимости от качества линии. Из-за адаптивности скорости передачи эту технологию иногда называют RADSL (Rate Adaptive DSL). Она базируется на САР и включена ANSI в спецификацию TR-59. Различают ADSL over POTS и ADSL over ISDN. В зависимости от вида применения используются различные диапазоны частот.
Первые версии ADSL имели следующие отношения скоростей передачи в прямом и обратном направлениях: ADSL1 – 1,5 Мбит/с / 16 кбит/с; ADSL2 – 3 Мбит/с / 16 кбит/с; ADSL3 -6 Мбит/с / 64 кбит/с).
Очень высокие скорости передачи в прямом и обратном направлениях достигаются с помощью VDSL. Ранее для VDSL использовались также обозначения VADSL, BDSL (Broadband DSL) или VHDSL (Very High bitrate DSL). Стандартизация VDSL пока не закончена и не решено, какая из технологий будет выбрана: упомянутая выше технология, основанная на TDD, или технология на основе FDD. В настоящее время нормирование этих технологий не может быть полностью завершено, так как ни у одной из них нет особых преимуществ по сравнению с другой.
Внедрение ADSL на практике показало, что установка разветвителей связана с большими затратами, поэтому были начаты поиски технологий ADSL без разветвителя. Целым рядом фирм были предложены различные варианты, исходя из уменьшения скорости передачи в обоих направлениях по сравнению с ADSL (например, MVL – Multiple virtual Line DSL, CDSL – Consumer DSL, CiDSL – Consumer installable DSL). Удалось реализовать без разветвителя и "full rate ADSL". Технологии ADSL, не требующие разветвителя, были нормированы в МСЭ (G.992.1) и получили название G.Lite (а также ADSL.Lite или DSL.Lite).
VDSL.Lite – технология, которая должна занять нишу между ADSL и VDSL.
Одним из самых популярных в последнее время является термин – VoDSL (Voice over DSL), что буквально означает передачу речевых сигналов по цифровым линиям сети абонентского доступа. В целом данное обозначение подходит почти ко всем высокоскоростным технологиям xDSL. Отдельно выделяют VoSDSL и VoADSL, особенностью которых является сочетание сжатия речевых сигналов и АТМ.
Положительный опыт производства и использования DSL-оборудования в сетях абонентского доступа привел к появлению аналогичных систем для цифровизации существующих магистральных медно-кабельных линий, которые пока еще слишком дорого заменять на волокно. Поэтому хотя технологии xDSL и рассматриваются как временная замена оптоволоконных АЛ (абонентских линий), они еще долго будут востребованы в сетях абонентского доступа, включая сети специального назначения. Некоторые характеристики основных xDSL-технологий представлены в таблице.
Таблица. Характеристики
основных xDSL-технологий
Использование сетей КТВ для построения интерактивных сетей
доступа к мультимедийным услугам стало возможным с появлением в 1997 году
стандарта DOCSIS (Data over Cable Service Interface Specification),
разработанного по инициативе организации операторов кабельных сетей Северной
Америки MCNS (Multimedia Network System Partners Ltd.). Для построения
гибридных (HFC – Hybrid Fiber Coaxial) сетей КТВ сегодня имеется 5 стандартов:
три американских (DOCSIS 1.0, DOCSIS 1.1 и DOCSIS 2.0), один европейский
(Euro-DOCSIS) и один международный (Рек. J.112 ITU-T), объединяющий требования
американских и европейского стандартов. Дальнейшее развитие европейского
(IPCableCom) и американского (PacketCable) вариантов спецификаций на HFC-сети
продолжается в части создания дополнительных возможностей и внедрения новых
услуг. Для организации прямого канала в сетях КТВ США применяется полоса частот
6 МГц (Рек. J.83.B. ITU-T) в диапазоне частот 88-860 МГц. При использовании
модуляции 256QAM скорость передачи данных в прямом канале достигает 42 Мбит/с.
В Европе для этих целей занимается полоса частот 8 МГц (Рек. J.83.A ITU-T) в
диапазоне частот 108-862 МГц, а скорость передачи составляет 52 Мбит/с. Отличие
европейских и американских сетей КТВ не ограничивается только указанными характеристиками.
Они разнятся также методами сигнализации и организации интерфейса V5, методами
обеспечения безопасности и т.д. В целом эти различия и определили появление
двух стандартов на обратный канал в интерактивных сетях КТВ: DOCSIS и
EuroDOCSIS [4]. Стандарт DOCSIS 1.0 определяет физический и МАС-уровни, уровень
управления для кабельных модемов и головных станций CMTS (Cable Modem
Termination System), принципы обеспечения сетевой безопасности (шифрование и
аутентификация) и качество обслуживания. Для организации обратного канала
выделен диапазон частот 5-42 МГц. Скорость передачи в обратном канале для этого
канала не превышает 1 Мбит/с. Дальнейшее совершенствование стандартов DOCSIS
шло по пути увеличения пропускной способности обратного канала, обеспечения
механизмов QoS для IP-телефонии и мультимедийных приложений. В третьей версии
стандарта DOCSIS 2.0 скорость передачи в обратном канале составляет около 30
Мбит/с. В Европе для организации обратного канала выделен диапазон частот 5-65
МГц, а скорость передачи составляет около 42 Мбит/с.
В работе [5] описана группа технологий КТВ, которая положена
в основу концепции построения широкополосных мультисервисных сетей следующего
поколения.
Группа технологий FTTx (Fiber To The x, где x может быть заменен на B – Building – здание или Cab – Cabinet – распределительный шкаф сети абонентских линий, см. рис. 1) предназначена для совместного использования с технологиями ADSL и VDSL и позволяет более эффективно использовать пропускную способность этих технологий благодаря сокращению длины медно-кабельных линий связи [6].
Эти технологии позволяют предоставлять индивидуальному пользователю каналы с пропускной способностью выше 1 Гбит/с, однако стоимость их пока высока. В настоящее время для предоставления пользователям широкополосных услуг используются обычно смешанные медно-оптические сети доступа. Существует несколько концепций разворачивания сети доступа смешанного типа. Одна из них называется HFC (Hybrid Fiber Coaxial) и предполагает доведение оптики до точки концентрации, при этом распределительная абонентская сеть строится на основе коаксиальных кабелей. Данная архитектура не получила широкого распространения и используется обычно лишь операторами кабельного телевидения. Другая концепция является разновидностью концепции FTTx и носит название FTTB (Fiber To The Building – "волокно к зданию", то есть доведение ВОЛ С до офисного здания). Согласно концепции FTTB распределение сигналов по абонентам внутри здания осуществляется по витым медным парам с использованием преимущественно технологии VDSL [7].
На рис. 4 представлены другие варианты концепции FTTx.
Рис. 4. Технологии
оптического доступа
Варианты доступа FTTH и FTTB пока не получили широкого распростра- нения. Связано это в основном с тем, что их реализация требует от оператора значительно больших инвестиций, чем построение DSL-инфраструктуры, поскольку для предоставления абоненту высокоскоростного канала (до нескольких Гбит/с) необходимо во много раз увеличить пропускную способность опорных сетей, протянуть оптоволокно до абонента, разработать немало новых приложений и, самое главное, убедить абонента заплатить за это деньги. Поэтому многие операторы до сих пор стараются использовать имеющуюся медно-кабельную инфраструктуру.
В Северной Америке ситуация другая. Там достаточно хорошо развиты сети операторов кабельного телевидения HFC, поэтому внедрение концепций FTTH – и особенно FTTB – набирает обороты вслед за ростом спроса на широкополосные мультимедийные услуги. Широкополосные решения довольно быстро распространяются в Азиатско-Тихоокеанском регионе, особенно в Японии. Таким образом, вложения в инфраструктуру ВОЛС являются эффективными и долговременными, а внедрение технологий FTTx становится оправданным и весьма перспективным направлением, в том числе и в России [7].
Подгруппа технологий PON – это семейство быстроразвивающихся, наиболее перспективных технологий широкополосного мультисервисного множественного доступа по оптическому волокну. Суть технологии пассивных оптических сетей, вытекающая из ее названия, состоит в том, что ее распределительная сеть строится без каких-либо активных компонентов: разветвление оптического сигнала осуществляется с помощью пассивных делителей оптической мощности – сплиттеров. Следствием этого преимущества является снижение стоимости системы доступа, уменьшение объема необходимого сетевого управления, высокая дальность передачи и отсутствие необходимости в последующей модернизации распределительной сети.
Из технологий подгруппы PON на сегодняшний день известны 4
вида (рис. 5):
• APON (ATM PON);
• BPON (Broadband PON);
• GPON (Gigabit PON);
• EPON (Ethernet PON).
Рис. 5. Концепция
построения САД на базе оптоволокна
Стандарт на APON был создан международным консорциумом FSAN (Full Service Access Network) в 1995 году. В состав сети APON входят: один сетевой узел OLT (Optical Line Terminal), до 32 абонентских терминалов ONU (Optical Network Unit) и пассивные оптические ответвители (splitter). Прямой и обратный каналы с пропускной способностью 622 Мбит/с организуются в одном оптическом волокне за счет волнового уплотнения – передача к абонентам ведется на длине волны 1550 нм, а в обратном направлении – 1310 нм. Скорость передачи информации для индивидуального пользователя составляет 20 Мбит/с, а максимальное удаление пользователя от узла доступа – 20 км.
В технологии BPON дополнительно предусмотрены динамическое назначение полосы частот и возможность работы на дополнительных длинах волн. Помимо традиционных, технология BPON реализует большое количество широкополосных услуг, включая доступ в Интернет и трансляцию аналогового и цифрового видео.
В 2001 г. в институте IEEE была образована рабочая группа Ethernet in the First Mile (EFM). Ее основные усилия были направлены на стандартизацию симметричной технологии Ethernet Passive Optical Networking (EPON), обеспечивающей скорость передачи до 1,25 Гбит/с и предназначенной для транспортировки преимущественно Ethernet-трафика. Результатом деятельности группы стало создание стандарта EPON (IEEE 802.3ah).
Консорциум FSAN предложил новое решение для построения оптических сетей доступа GPON (Gigabit PON). Данная технология с производительностью свыше 1 Гбит/с (Рек. МСЭ G.984) предназначена для реализации мультисер-висных услуг, причем не только на базе протокола IP, но и на основе ТДМ.
Технология PON имеет ряд неоспоримых преимуществ [7]:
• невысокая стоимость построения сети;
• низкие расходы на эксплуатацию и техническое обслуживание
сети;
• возможность постепенного наращивания сети;
• перспективность создания распределительной инфраструктуры,
обеспечивающей в будущем развитие любых мультимедийных услуг с практически
неограниченной полосой пропускания;
• высокая надежность за счет использования пассивного
оборудования.
По мнению многих аналитиков, рынок систем PON будет поступательно развиваться в течение ближайших трех-четырех лет, после чего начнется массовое внедрение систем в жилищном секторе.
1. Орлов С. Ethernet в сетях доступа// LAN. Журнал сетевых решений. 2004. № 1.
2. Парфенов Ю.А., Мирошников Д.Г. "Последняя миля" на медных кабелях. – М.: Эко-Тренз, 2001.
3. Блушке А. "Родословная" хDSL, или Попытка классификации технологии хDSL для "последней мили" // Технологии и средства связи. 2000. № 1.
4. Барабаш П.А., Воробьев С.П., Махровский О.В., Шибанов В.С. Мультисервисные сети кабельного телевидения. – СПб.: Наука, 2000.
5. Барабаш П.А., Воробьев С.П., Махровский О.В., Шибанов В.С. Мультисервисные сети кабельного телевидения. 2-е издание. – СПб.: Наука, 2004.
6. Котиков И.М. Классификация и сравнительный анализ технологий проводного доступа // Технологии и средства связи. Специальный выпуск "Системы абонентского доступа", 2004.
7. Долотов Д. В. Оптические технологии в сетях доступа // Технологии и средства связи. Специальный выпуск "Системы абонентского доступа", 2004.
Опубликовано: Каталог "Системы абонентского доступа"-2008
Посещений: 61327
Статьи по теме
Автор
| |||
Автор
| |||
Автор
| |||
В рубрику "Оборудование и технологии" | К списку рубрик | К списку авторов | К списку публикаций